Integrating Motion Control with LabVIEW

John Wu LabVIEW CLA, PMP **TENET Technologies**

John Wu

In this presentation, you'll learn:

- Benefits of integrating motion control with LabVIEW
- Motion control fundamentals
- Current motion controller options
- How to add motion control to LabVIEW in 30 minutes or less

About me

- John Wu
 - Previous: 15 years of NI experience
 - Award-winning Motion Control System Engineer
 - Field Sales/Marketing
 - Certified LabVIEW Instructor
 - Certified LabVIEW Architect
 - Current: Founder/CEO, TENET Technologies
 - Located in Taipei, Taiwan
 - We make motion controllers specifically for LabVIEW users
 - Also CEO of Extend Test (www.extendtest.co)

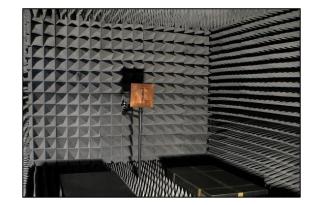
John Wu LabVIEW CLA, PMP

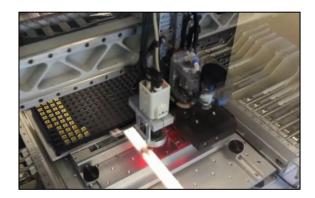
Email:john.wu@tenet-tech.coLinkedIn:linkedin.com/in/johnwu-tenet/Web:www.tenet-tech.co

Benefits of motion control with LabVIEW

Why motion control with LabVIEW?

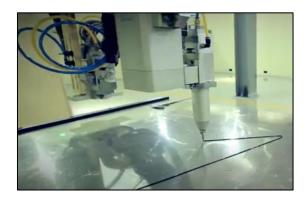
- LabVIEW is great for:
 - Data acquisition
 - Measurements and testing
 - Vision inspection
 - GUI (graphical user interface)
 - Algorithms
 - And more ...
- You'll need motion control for ...
 - Moving or manipulating the DUT (device under test)
 - Moving or manipulating the sensor
 - Or both


LabVIEW



LabVIEW applications with motion control

- Antenna Testing
 - Rotating DUT in anechoic chamber while <u>measuring</u> RF response
- Keystroke actuation force testing
 - Moving mechanical finger in downstroke while <u>measuring</u> force
- Semiconductor wafer inspection
 - Sweeping camera across entire wafer while <u>measuring</u> and inspecting defects

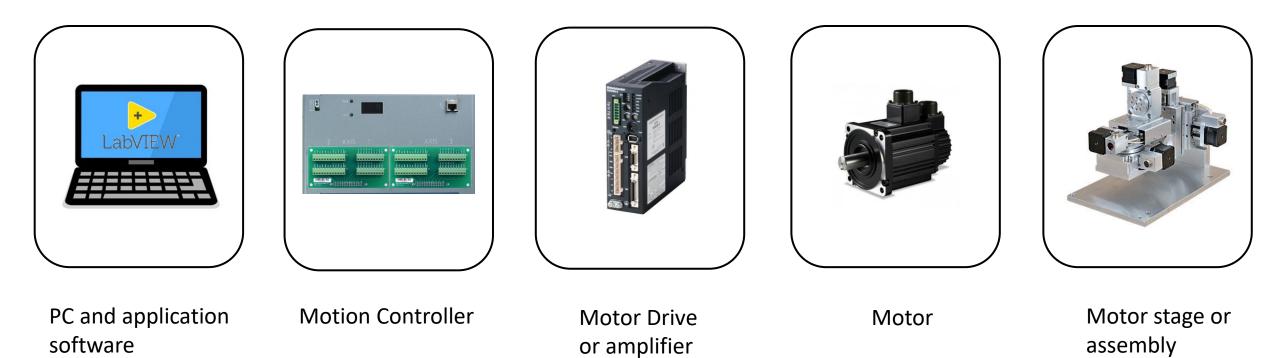

LabVIEW applications with motion control

Flight simulator

- Controlling 6-DOF stewart platform mechanics, while <u>calculating</u> inverse kinematics in LabVIEW
- Medical imaging
 - Moving sensor to sweep cross entire area, while processing data to stitch image together
- Glue dispensing for automotive parts
 - Moving nozzle in contoured profile while <u>controlling</u> amount of glue dispensed

Motion control fundamentals

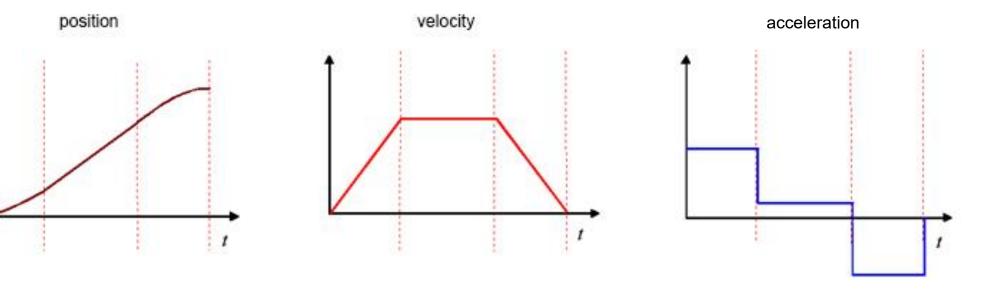
Goal of Motion Control


 To move an object in one or multiple dimensions while having precise control over the motion and its kinematics

- Physical elements to be controlled include:
 - Stepper motor
 - Servo motor
 - Conveyor belt
 - Gears and pulleys
 - Robot

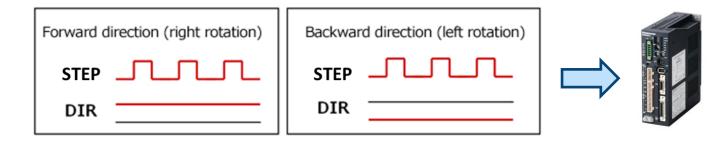
Components of a motion control system

Functions of a Motion Controller


- 1. Generate motion trajectory
- 2. Send commands to motor drive based on trajectory
- 3. Monitor feedback from drive and I/O
- 4. (Optional) closed-loop control

1. Generate motion trajectory

 Calculates motion profile based on user-defined position, velocity, and acceleration settings



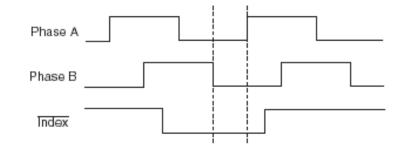
Motion Profiles

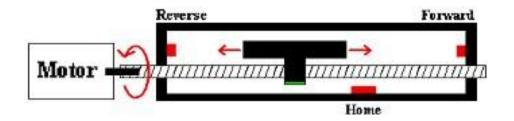
2. Send commands to motor drive

1-pulse output (STEP/DIR)

2-pulse output (CW/CCW)

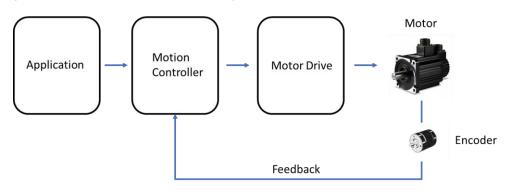
Forward direction (right rotation)	Backward direction (left rotation)	Ru	
cw	CW		
ccw			


- For each pulse sent, motor will turn by a specific degree
- For ex: if motor has 200 steps per revolution, each pulse = 1.8°


3. Monitor feedback from drive and I/O

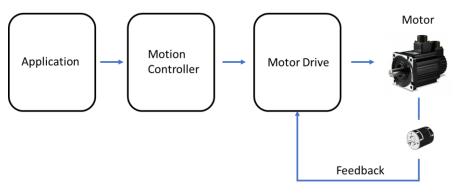
- Position Quadrature Encoders
 - A/B/Index (Z) pulses can be used to determine position and direction

- Home and limit switches
 - Prevent potential crashes
 - Provide reference point (home) for movements



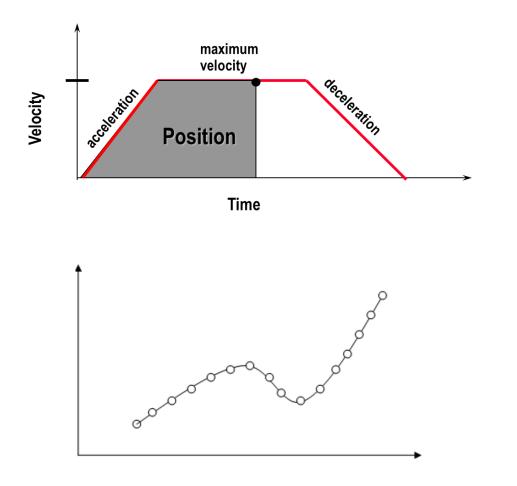
4. (optional) closed-loop control

- What is closed-loop control?
 - Active compensation for deviation between target position and actual position
 - PID is popular method of control


(PID on motion controller)

• Note:

- Most modern drives now have integrated closedloop control
- Additional compensation is not needed from motion controller
- Feedback is passed from drive to motion controller


(PID on motion drive)

Types of moves

- Line (point-to-point)
 - Define target position, accelerate to target velocity, then decelerate
- Contour
 - Store array of pre-defined points, move through each point
- Multi-axis interpolation
 - Execute move in 2-D or 3-D coordinate systems
 - Can combine with Line move or Contour move
- Velocity move
 - No target position, only velocity

Current motion controller options

Price vs. performance

Performance

Low-end:

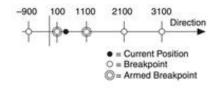
- sub \$100 USD
- Single-axis only
- Typically RS-232 or RS-485
- No synchronization
- Slow response

PLCs:

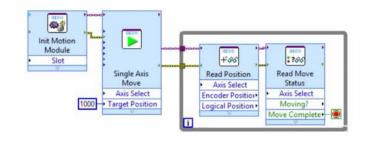
- Typically \$300-500 USD per axis
- Some have synchronization
- Rugged
- Uses ladder logic to program

High-end laboratory:

- \$800-1000 USD per axis
- Synchronization
- Typically DLL, ActiveX, or .NET driver


Price

However, we must keep in mind the considerations for integrating with LabVIEW...


Considerations for integrating with LabVIEW

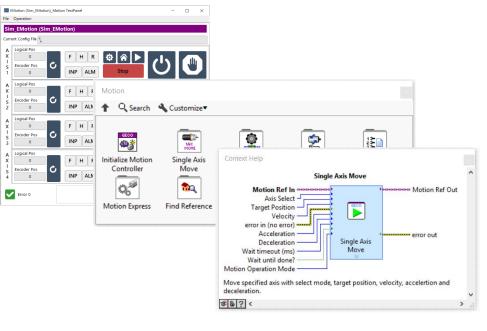
- Performance
 - Multi-axis synchronization?
 - Low latency?
- Integration
 - LabVIEW compatibility across versions?
 - Breakpoint triggers for syncing DAQ, vision, and other sensors?
- Ease of use
 - Intuitive LabVIEW driver design?
 - Friendly for both LabVIEW novices and experts?

Introducing: TENET EMotion

TENET TECHNOLOGIES High-end laboratory EMotion 4-axis controller Performance PLCs PC-based (LabVIEW): Access to variety of LabVIEW • Low-end libraries and toolkits Multi-axis synchronization Low latency Breakpoint triggering 100 USD per axis 500 USD per axis 1000 USD per axis

Best performance for modest price.

Enjoy the benefits and performance of PC-based LabVIEW graphical system design!

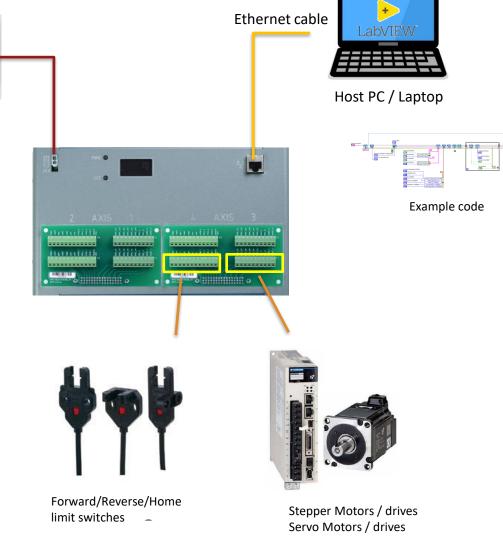

Introducing: TENET EMotion

- 4-axes ethernet motion controller
- Add motion to LabVIEW in 30min or less

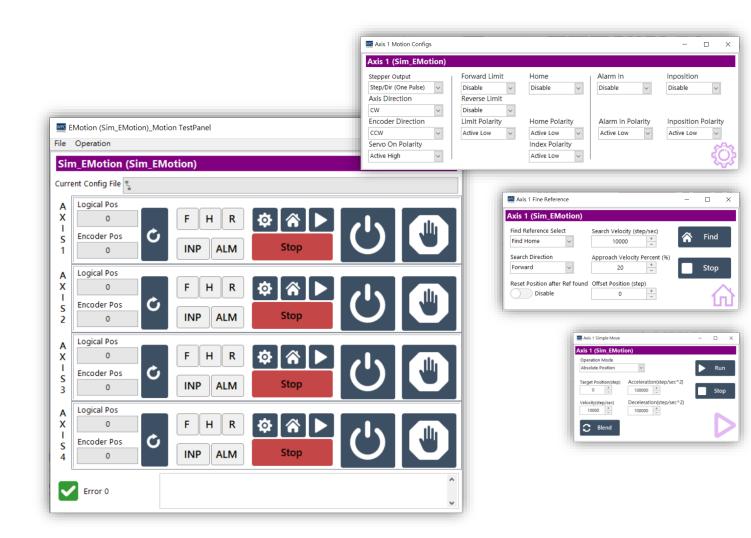
LabVIEW software features:

- Test Panels
- EMotion LabVIEW API
- Example Vis
- Exclusive! Motion Express VI
- Compatible with LabVIEW 2015+
- Compatible with LabVIEW Real-Time (PXI, cRIO, sbRIO)

Using the TENET EMotion

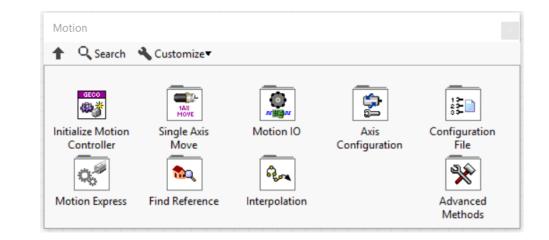

Steps	Time	
Install software	10 min.	
Connect motor drive and switches	10 min.	
Connect 24V power	1 min.	
Configure IP address	3 min.	
Connect ethernet cable	1 min.	
Verify motor with test panel	5 min.	
Use examples and start programming!	*Total = 30 min.	

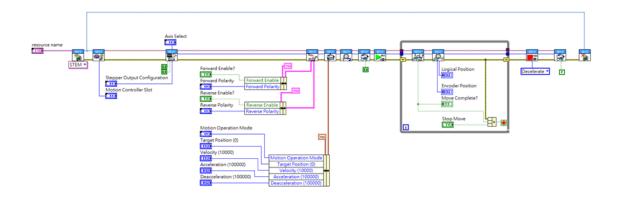
*Typical times, exact times for user may vary.


TENET offers free onboarding services to ensure swift installation.

24V power supply

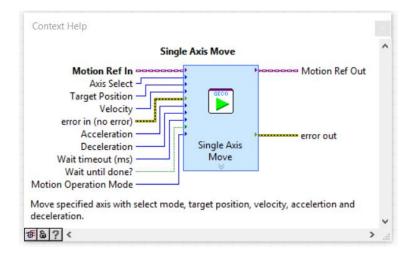
EMotion Test Panel

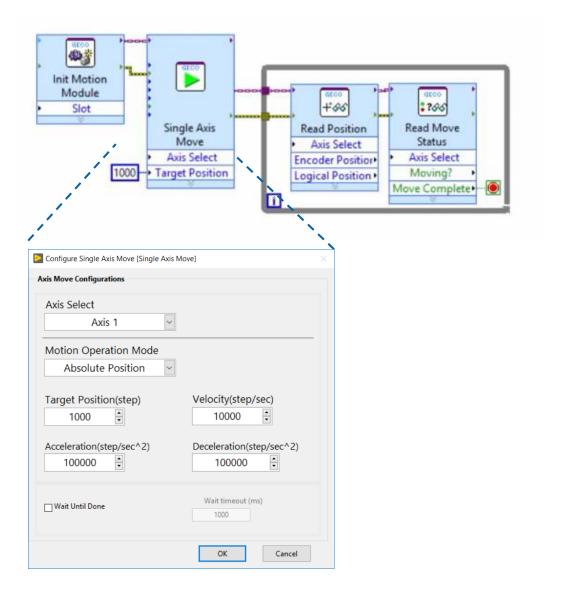



- Quickly verify if hardware is functioning
- Users can execute any command in test panel
- Go-to tool for isolating issues

EMotion LabVIEW driver

- Inspired by NI-Motion driver API
 - (now discontinued)
- Designed by certified LabVIEW engineers
- Follows dataflow paradigm and LabVIEW best practices





Exclusive! Motion Express VI

- Define motion via dialog window
- Generates LabVIEW code in background
- Easier for novice LabVIEW users

LabVIEW Examples

- Searchable in LabVIEW Example Finder
- There's an example for each available hardware function
- No need to start from scratch

rowse Search	Double-click an example to open it.	Information	Browse Search	Double-click an example to open it.	Information
Browse according to:	tracetool	^	Browse according to:	GECO USB - Load Configuration File.vi	^
-	Cision			GECO USB - Servo On.vi	
🔘 Task	Sister Content		O Task	GECO USB-2 Axis Circular	-
<u> </u>	Sister FPGA		Directory Structure	Interpolation.vi	
🚖 WP	Waveform		Contectory structure	GECO USB-2 Axis Contouring-	- I
	Systems Ltd			Capsule Route.vi	
	GECO Driver			GECO USB-2 Axis Linear	
	🔁 Example			Interpolation .vi	
				GECO USB-3 Axis Asychronous	
	AIO			Move(Simple).vi	
	Motion			GECO USB-3 Axis Contouring.vi	
	Switch			GECO USB-3 Axis Linear Interpolation .vi	
	Thermo			GECO USB-3 Axis Sychronous	-
	UART		~	Move(Simple).vi	
		×		GECO USB-Enumerate USB	-
		Requirements		Devices.vi	Requireme
		Requirements		GECO USB-Find Home(Simple).vi	Requireme
	Motion			GECO USB-Find Home.vi	-
Visit ni.com for more examples	_			GECO USB-Find Index(Simple).vi	
	_			GECO USB-Find Index.vi	
	_		Visit ni.com	GECO USB-Find Limit(Simple).vi	
		visit ni.com for more examples		GECO USB-Find Limit.vi	
	Subvis		GECO USB-Helical Interpolation.vi		
rdware	GECO Driver Examples_PC.lvproj		Hardware	GECO USB-Position Blending.vi	
Find hardware	V V		Find hardware	GECO USB-Single Axis Move(Simpl	~

Close

Demo Video

https://docs.tenet-tech.co/emotion-getting-started-guide

TENET EMotion additional benefits

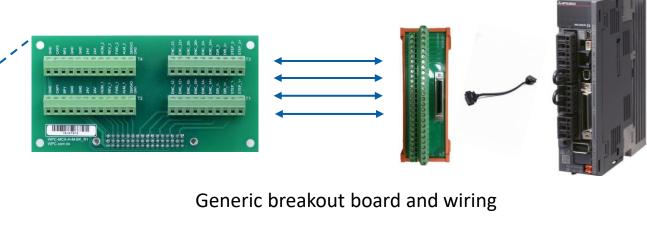
S-curve velocity profiles available

Trapezoidal Profile

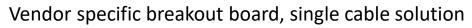
Trapezoidal velocity profile (typical)

IV. Velocity Velocity - 1 Time Time da/dt = "jerk" Acceleration eleration Time Time

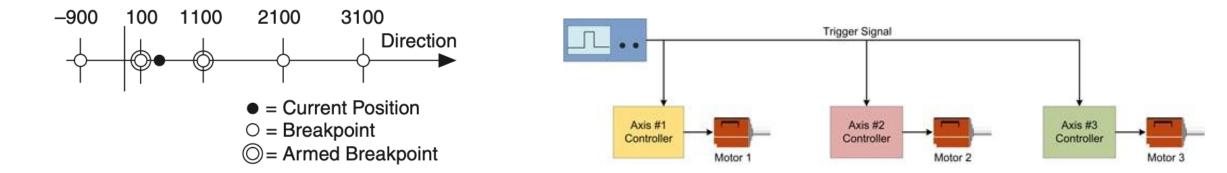
S-curve velocity profile (advanced)


S-Curve Profile

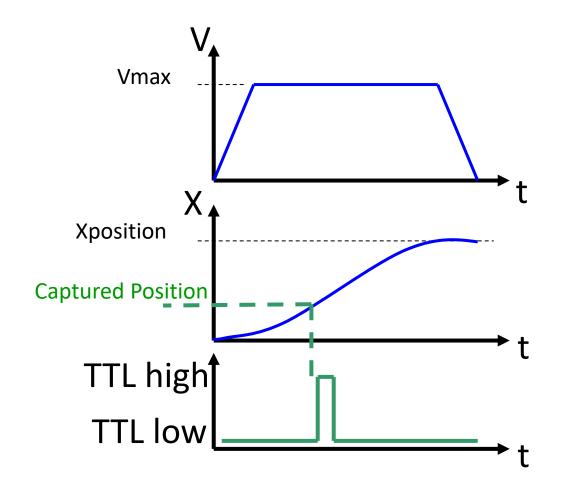
Rate of change of acceleration (jerk) can be defined, which allows for smoother velocity curve.


Direct connectivity to popular motion drives

- Simplifies cable complexity and eliminates noise issues
- Models supported:
 - Delta ASDA-A2, B2
 - Yaskawa SGDV/SGD7 (Sigma-7)
 - Panasonic Minas A4/A5/A6
 - Mitsubishi MR-J4/JE/J2S

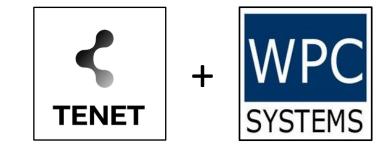


Breakpoints (position triggers)

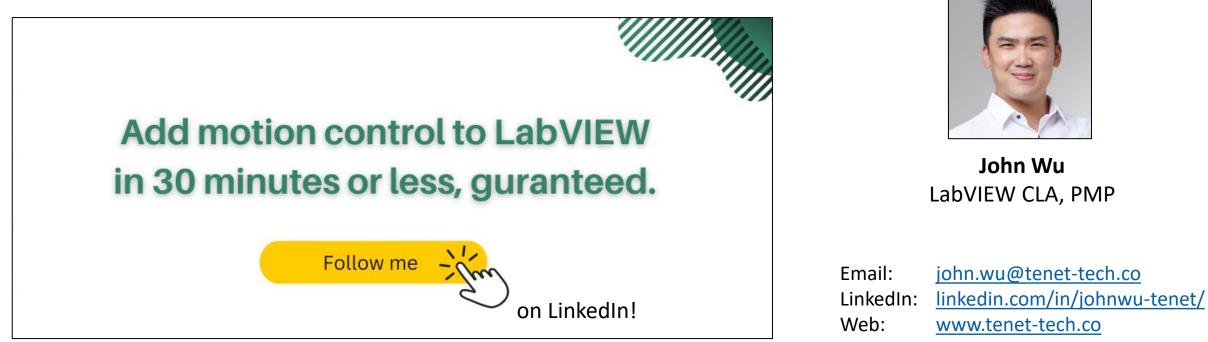

- Used to synchronize other sub-systems with motion
- When motor reaches a pre-defined position, a breakpoint (pulse) is triggered
- Trigger pulses are used to clock other systems, such as DAQ or other axes
- Very useful for move with varying speeds
 - Can't always assume velocity is constant

High-speed position capture

- Immediately capture an event occurrence position and store it in memory
- Useful if you have an external trigger and want to know the position at which the trigger occurs



About TENET Technologies, Inc.


Global sales channel of WPC Systems Ltd., an NI Alliance Partner

- Over 15+ years of LabVIEW and NI product knowledge
- Over 15+ years of system integration experience
- Custom embedded systems
- Product design and manufacturing
- Based in Taipei, Taiwan
- Founding team with over 20+ years of NI experience

Contact Info

For more TENET EMotion, visit: <u>geco-lv.com/emotion.html</u>

BUT WAIT! There's more...

- My other business: <u>www.extendtest.co</u>
 - Buy and sell legacy NI hardware

Contact Info

For more TENET EMotion, visit: <u>geco-lv.com/emotion.html</u>

For discontinued NI hardware, visit: <u>www.extendtest.co</u>